
AQualitative Analysis of Fuzzer Usability and Challenges
Yunze Zhao

University of Maryland
College Park, MD, USA

yunze@umd.edu

Wentao Guo
University of Maryland
College Park, MD, USA

wguo5@umd.edu

Harrison Goldstein
University of Maryland
College Park, MD, USA
harrygol@umd.edu

Daniel Votipka
Tufts University

Medford, MA, USA
dvotipka@cs.tufts.edu

Kelsey R. Fulton
Colorado School of Mines

Golden, CO, USA
kelsey.fulton@mines.edu

Michelle L. Mazurek
University of Maryland
College Park, MD, USA
mmazurek@umd.edu

Abstract
Fuzzing is a widely adopted technique for uncovering software vul-
nerabilities by generating random or mutated test inputs to trigger
unexpected behavior. However, little is known about how devel-
opers actually use fuzzing tools in practice, the challenges they
face, and where current tools fall short. This study investigates
the human side of fuzzing via 18 semi-structured interviews with
fuzzing users across diverse domains. These interviews explore par-
ticipants’ workflows, frustrations, and expectations around fuzzing,
revealing critical usability gaps and design opportunities. Our re-
sults can inform the next generation of fuzzing tools to improve
user experience, reduce manual effort, and enable more effective
integration of fuzzing into real-world workflows.

CCS Concepts
• Security and privacy→ Usability in security and privacy.

Keywords
Fuzzing, Usable Security, Usability, Dynamic Testing

ACM Reference Format:
Yunze Zhao, Wentao Guo, Harrison Goldstein, Daniel Votipka, Kelsey R.
Fulton, and Michelle L. Mazurek. 2025. A Qualitative Analysis of Fuzzer
Usability and Challenges. In Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’25), October 13–17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3719027.3765055

1 Introduction
Automated techniques for identifying security vulnerabilities have
become essential tools for developers and security professionals.
Among these techniques, fuzzing has emerged as a widely adopted
automated testing method, crucial for discovering software vulnera-
bilities by generating random inputs and evaluating how programs
handle them. Its ability to uncover unexpected behaviors and crit-
ical security flaws has made it indispensable in open-source and
commercial software development projects [13, 42, 52, 67, 81].

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765055

The efficacy of fuzzing in vulnerability discovery is well doc-
umented, with tools (fuzzers) such as AFL/AFL++, FuzzTest, and
OSS-Fuzz leading the way in identifying thousands of vulnerabili-
ties across widely used software, including complex systems such
as browsers and kernels [5, 12, 14, 17, 48]. Consequently, fuzzing
is increasingly recognized as a critical and powerful concept in
modern software testing pipelines and is recommended in vari-
ous industry standards and security guidelines, underscoring its
growing role in secure software development [4, 25, 60].

The majority of fuzzing research has prioritized technical ad-
vancements, such as input generation [34, 68], seed scheduling [56,
80], mutation [7, 28], and harness generation [2, 21, 57]. However,
this focus on technical improvement has largely overlooked how
users interact with and adapt these tools in practice, leading to us-
ability challenges that are not mere inconveniences but significant
barriers that directly undermine the security benefits these tools
aim to provide.

Initial usability research—primarily observational or experimen-
tal studies with students and/or in lab settings—has begun to iden-
tify some potentially important challenges. For example, fuzzers
tend to exhibit a steep learning curve, reducing their accessiblity to
non-expert developers [3, 45, 49]. Grey-box fuzzers like AFL and lib-
Fuzzer rely on code coverage feedback to guide testing and discover
bugs, but configuring and tuning these tools for optimal perfor-
mance demand a deep understanding of the underlyingmechanisms
[5, 14, 81]. Challenges with configuration and associated workflows
can lead to frustration and misconfiguration, reducing the usage of
fuzzing in everyday software development practices [31, 81]. Fur-
ther, a lack of standardized evaluation practices makes it difficult
for users to compare options based on performance [19, 27]

These prior studies have made an important start toward under-
standing fuzzer usability, but they have limited visibility into how
experienced practitioners fit fuzzers into their real-world develop-
ment and vulnerability analysis workflows more broadly.

This paper attempts to address this gap through 18 semi-structured
interviews with experienced users of fuzzers from both academia
and industry. Semi-structured interviews provide the flexibility to
qualitatively explore the specific struggles and obstacles faced by
practitioners, while also capturing a broad range of insights into
their workflows, challenges, and suggestions for improvement.

Specifically, we consider the following key research questions:

RQ1: What specific challenges do users face across the lifecycle of
a fuzzing campaign in real-world deployments?

https://doi.org/10.1145/3719027.3765055
https://doi.org/10.1145/3719027.3765055
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765055

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

RQ2: What strategies do practitioners use to address or work
around these challenges?

RQ3: What improvements to fuzzers would better support practi-
cal adoption and real-world workflows?

Our findings reveal that while participants view fuzzing as pow-
erful and indispensable, they frequently encounter steep learning
curves, unintuitive interfaces, and limited feedback during both
setup and analysis. Participants often rely on informal heuristics
and self-directed learning, leading to incomplete or inconsistent
mental models of how fuzzers operate. Many reported that fuzzers
are difficult to configure and rarely integrate well with modern de-
velopment workflows. Despite these barriers, participants demon-
strated creative adaptations to make fuzzers useful and expressed a
strong desire for tools that offer more actionable guidance, better
integration with existing workflows, and smarter, more transparent
interfaces.

2 Background and related work
In this section, we provide a brief introduction to fuzzing, including
fundamental concepts, popular techniques, and widely used tools.
Then we discuss studies on the usability of fuzzers and of security
tools more broadly.

2.1 Fundamental concepts of fuzzing
Fuzzing is a form of dynamic software testing that evaluates pro-
gram behavior by executing code with a wide range of inputs, then
observing runtime outcomes. A fundamental assumption in fuzzing
is that reliability flaws and security flaws will manifest as detectable
failures when exposed to sufficiently diverse inputs. At its core, a
fuzzing campaign operates by generating inputs to the fuzzing
target (the application, library, or system under test), executing
it, and monitoring for failures such as crashes, hangs, or error sig-
nals [42]. Fuzzers sometimes begin with a set of user-provided
inputs (seeds) and progressively mutate them through a mutator
component to create new test cases. Inputs that explore new paths
or trigger interesting behavior are used to guide further fuzzing
target exploration. To connect the fuzzer to program logic, users
typically write a harness: a wrapper function that accepts fuzzer
inputs and passes them to fuzzing target.

Fuzzers are often classified by howmuch visibility they have into
the target’s internals. Black-box fuzzers treat the program as opaque,
relying solely on observable outputs like crashes. Conversely, white-
box fuzzers leverage program structure through techniques like
symbolic execution. In between, grey-box fuzzers combine light-
weight instrumentation with runtime feedback to guide input gen-
eration. The most common form of runtime feedback is coverage:
a measure of how much of the program (e.g., branches, paths, or
functions) has been exercised [16, 30, 42, 73, 74, 81]. Coverage-
guided grey-box fuzzers (e.g., AFL, AFL++, libFuzzer, and Hong-
gfuzz) dominate both research and practice due to their balance
between effectiveness and scalability [14, 81].

Our participants primarily reported experience with these widely
used tools; as such, coverage-guided grey-box fuzzing is the main
focus of our study.

2.2 Workflow of coverage-guided fuzzing
While the specifics of fuzzing vary depending on the use case [30,
42, 73, 74, 81], the typical workflow of coverage-guided fuzzers
requires users to actively prepare the target, integrate the fuzzer,
and interpret dynamic behavior and results.

Building the target with fuzzing instrumentation. First, the
target application must be instrumented to enable runtime feed-
back [70]. This typically requires using custom compilers or com-
piler flags. This step may also require linking against specific run-
time libraries or enabling sanitizers for memory error detection [32].

Connecting fuzzing inputs to the target.Users must next ensure
that generated fuzzing inputs are routed into the program logic
they want to test. This can take different forms depending on the
fuzzer and the target application’s structure.

Some fuzzers, such as libFuzzer [33], expect users to supply
a harness written in the fuzz target’s source code and compiled
together with the fuzzer. Creating a harness requires understanding
both the application’s API and how the fuzzer invokes the harness.

In contrast, tools like AFL and AFL++ typically fuzz full programs
through the command-line interface [14]. These tools inject inputs
via stdin or temporary files, and theymonitor for crashes or unusual
behavior. This approach is simpler because it does not require
modifying source code, but it offers less control over targeting
specific code paths or functions.

Most fuzzers generate unstructured, byte-level inputs, which can
be useful for raw parsing logic but require further configuration by
users for complex, structured input formats.

Recent research has explored automating input delivery, usually
through harness generation systems [2, 22, 77, 79]. More recently,
large language models have been employed to automatically gen-
erate harnesses [10, 37, 71, 76, 78], showing promise in reducing
manual setup effort. However, these automated approaches, while
powerful, often still require manual refinement for complex APIs
or targets.

Configuring input strategy and seeds. Once input delivery is
established, users sometimes need to configure how the fuzzer gen-
erates inputs to explore different execution paths [30]. Most modern
fuzzers come with optimized, built-in mutation strategies that can
be effective out of the box [20, 28, 35, 36, 53]. Instead of adjusting
the mutation strategy, users typically provide example seed inputs,
enable grammar support [69], or select from advanced options. In
particular, selecting high-quality initial seeds can accelerate path
exploration, improve code coverage, and reduce the number of
iterations needed to discover bugs [20, 53].

Monitoring and interpreting program behavior. In coverage-
guided fuzzing, users track dynamic feedback such as code coverage,
execution counts, or branch exploration to assess whether the fuzzer
is exercising new paths. They can then adjust the configuration
accordingly.

While running, fuzzers monitor for anomalous behavior such
as crashes, memory violations, assertion failures, or timeouts by
using lightweight instrumentation or integrations with external

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

sanitizers. They report on these anomalies, providing output such
as crash logs and stack or execution traces. Users must interpret this
output to understand the (possible) bugs the fuzzer has identified.

2.3 Fuzzer usability
Next, we turn to existing research examining fuzzer usability, which
can be divided into two categories. First, some work has compared
various tools and usage contexts in controlled experiments [44, 49,
50]. For example, Nosco et al. conducted an experiment with 12
security professionals to compare the efficacy of breadth- vs. depth-
first approaches to fuzzing target selection [44]. In the process, they
identified challenges faced when participants attempted to set up
the fuzzers.

Plöger et al. investigated usability more directly, examining how
CTF participants and computer-science students engage with com-
mon fuzzers. In a first study comparing libFuzzer to the Clang
static analyzer, most participants struggled to set up the fuzzing
target [49]. In a follow-up comparing libFuzzer to AFL, the authors
found that even with clear goals and scaffolding to assist with
setup, student participants still struggled with both tools during
instrumentation, result interpretation, and harness creation [50].

While these studies provide valuable guidance toward improving
fuzzer usability, the restricted setting and generally limited fuzzing
experience of participants limits the scope of possible findings. For
example, participants’ relative inexperience often prevented them
from moving beyond initial setup, confining the identified chal-
lenges to the early stages of the fuzzing process. In contrast, our
study focuses on practitioners with long-term experience fuzzing
real-world systems, enabling us to identify a broader range of chal-
lenges, as well as strategies employed by practitioners to overcome
these challenges. By conducting semi-structured interviews, we are
able to explore in detail the nuanced contexts, mental models, and
workarounds that define modern fuzzing practice.

The second category of related work identifies fuzzing chal-
lenges broadly through surveys, expert discussions, and artifact
analyses [6, 45]. Böhme et al. synthesized discussions from a work-
ing group of 31 fuzzing practitioners and researchers, identifying
multiple fuzzing challenges [6]. They then surveyed 21 leaders in
industry and academia outside the working group to confirm these
challenges. They identify usability as one concern, emphasizing
that while fuzzing simplifies bug discovery, it still requires signif-
icant expertise; however, they do not explore concrete usability
challenges and their mitigations in depth.

Similarly, Nourry et al. reviewed GitHub issues associated with
OSS-Fuzz to produce a taxonomy of reported fuzzing challenges,
then validated by surveying 103 developers about their experi-
ences with each challenge [45]. Their taxonomy includes usability
challenges, such as selecting appropriate fuzzers and configuring
targets; however, it is limited to challenges that appear in GitHub
issues, and it does not detail how these challenges manifest in
practice or how fuzzing users overcome them.

Both studies take valuable steps in identifying the importance of
usability for fuzzing in practice. Our study expands on this work by
capturing a broader range of perspectives, using semi-structured
interviews to explore usability challenges (and their potential solu-
tions) in detail.

2.4 Usability beyond fuzzing
Next, we briefly survey the growing body of research investigating
and attempting to improve the usability of other (non-fuzzing)
security tools.

Static application security testing (SAST) tools, which analyze
source code, bytecode, or binaries without executing the program,
are particularly well studied. Prior work has shown these tools may
produce false positives that can overwhelm users [11, 18, 29, 58,
63, 64, 66], lack clear outputs [11, 38, 43, 58, 59, 62], or be hard to
configure [43, 58, 62, 65] and integrate into existing workflows [8,
23, 51]. These usability barriers often stem from mismatches with
developers’ workflows and inaccurate mental models of how the
tools operate, which can lead to distrust and abandonment [46, 61].

Rangnau et al. studied dynamic testing beyond fuzzing, focusing
on its integration into developers’ workflows [52]. Mattei et al.
performed a heuristic evaluation of 288 security tools (including
fuzzers), assessing their expected usability [40]. They found that
most security tools provide limited interaction and usability support,
with dynamic tools in particular exhibiting readability challenges.

Some researchers have worked to develop more human-centric
interfaces for security tools. Katcher et al. used paper prototypes to
identify user needs and provide interface design recommendations
for automating protocol reverse engineering [24]. Yakdan et al. de-
veloped a decompiler designed for code readability and showed
that it improved program understanding [72]. These successes mo-
tivate our effort to characterize usability challenges throughout
the lifecycle of real-world fuzzing campaigns and identify potential
human-centric design improvements.

3 Method
To explore our research questions, we conducted semi-structured
interviews with security professionals, software developers, and
security researchers who have applied experience using fuzzers in
academic or industry settings. Our goal was to understand how
these professionals interact with fuzzers, challenges they encounter,
and strategies they employ to improve their workflows.

3.1 Recruitment
We recruited 18 participants based on their experience with fuzzers.
To screen for relevant experience, we sent potential participants
an initial survey that collected demographic and contextual in-
formation, including professional background, years of fuzzing
experience, and the specific tools they used. The survey responses
helped to identify participants with substantial fuzzing experience
and provided context for interpreting their interviews.

As prior work has shown a learning curve for fuzzing, we in-
cluded participants with diverse experience levels to capture dif-
ferent perspectives along this spectrum. To focus on fuzzer usage,
we excluded potential participants whose primary expertise was
in fuzzer development. Instead, we selected for experience in areas
such as automated harness generation, fuzzer benchmarking, and
general software security, all of which involve practical tool usage.

Recruited participants from all backgrounds predominantly used
mainstream grey-box fuzzers (AFL, libFuzzer, and LibAFL), includ-
ing potential participants who built custom wrappers around these
tools [39]. Consequently, while we did not set out to focus on a

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

specific fuzzer category, our study’s findings organically centered
on the real-world use of these widely adopted tools, allowing us to
capture a comprehensive picture of their common challenges and
strengths.

We recruited academic and industry participants,1 using the
following strategies to ensure a diverse and qualified sample:

• Public contributions: We identified GitHub users who had sub-
mitted fuzzing-generated test cases for vulnerabilities in C, C++,
or Rust programs. These submissions demonstrated practical ex-
pertise and real-world fuzzing success. When GitHub profiles
included a personal website with contact information, we reached
out directly to invite participation.

• Academic publications: We contacted authors of recent re-
search papers that involve applying fuzzers. Our goal was to
recruit researchers with hands-on experience using fuzzing in
varied contexts, while excluding those whose primary experience
was limited to developing fuzzers.

• Online fuzzing communities: We posted recruitment messages
in multiple fuzzing-related Discord servers. These communities
include practitioners, researchers, and hobbyists, helping us reach
a broader pool of participants.

• Professional networks and snowball sampling: We recruited
additional participants through personal networks and referrals,
including asking participants to recommend colleagues or peers
with relevant experience.

3.2 Interview protocol
We conducted 18 semi-structured interviews between October 2024
and April 2025, each lasting approximately one hour. Each inter-
view followed a semi-structured format, allowing us to cover key
topics while also adapting to participants’ unique experiences. All
interviews were conducted over Zoom, except for one which was
conducted via Discord due to the participant’s preference.

This study was approved by the University of Maryland’s Institu-
tional Review Board. Participants were informed about the purpose
and scope of the study prior to participation through a consent
form at the beginning of the screening survey, where they con-
firmed their agreement to proceed. We verbally confirmed consent
again at the beginning of each interview. Participants were compen-
sated $75 USD for their time. Only audio from the interviews was
recorded, with participants’ permission. Recordings were stored on
secure, access-controlled machines. We transcribed interviews us-
ing OpenAIWhisper [47], an automated service. The model was run
entirely on local machines. Identifiable information was removed
or anonymized during transcription and analysis. Although some
participants discussed professional or project-related tooling, we
omit proprietary and sensitive technical details from our findings.

The interviews were structured around three key topics, reflect-
ing major stages of the fuzzing workflow discussed in Section 2.2:

• Fuzzer setup and usage: How participants select and prepare
fuzzing targets, including instrumentation, harness creation, seed
selection, and configuration.

1Some participants based in academia shared insights drawn from previous or ongoing
industry collaborations.

• Monitoring, interpreting, and managing output: How par-
ticipants analyze and act on fuzzer findings, addressing chal-
lenges such as redundant reports, prioritization strategies, and
extracting actionable insights.

• Opportunities for improvement: Reflections on potential en-
hancements to fuzzers, including desired features, usability im-
provements, and the integration of fuzzing with other security
testing methods.
While the interview script provided structure, we adopted an

iterative approach. As themes emerged, we refined or changed our
follow-up questions to probe relevant challenges in more depth. We
also updated our screening criteria: for example, once we reached
saturation with participants who primarily conducted fuzzer evalu-
ations, we began filtering out individuals with similar backgrounds.
We continued conducting interviews until we reached thematic sat-
uration. The research team determined saturation through regular
discussions of emerging themes after each interview. We observed
that novel insights began to diminish after the fifteenth interview,
and the final three interviews confirmed that our data had stabilized.

3.3 Data analysis
We conducted a collaborative thematic analysis to identify recurring
themes and insights [9], through the following stages:
(1) Collaborative initial coding: Two researchers jointly reviewed

a subset of transcripts, coding them together to develop a pre-
liminary codebook informed by early patterns in the data.

(2) Double-coding and refinement: The two researchers inde-
pendently double-coded several additional transcripts, meeting
regularly to discuss differences, resolve discrepancies, and itera-
tively refine the codebook.

(3) Primary coding with review: The remaining transcripts were
coded by one researcher, with the other providing review and
feedback. Throughout this stage, we continued to adjust and
refine the codebook, holding regular meetings to ensure consis-
tency and resolve uncertainties.
This collaborative coding process ensured the analysis was re-

liable and comprehensive, combining multiple perspectives to en-
hance the depth of the findings. We did not calculate inter-rater
reliability, consistent with interpretivist approaches to qualitative
research that emphasize collaborative sensemaking over statisti-
cal agreement [41]. The final codes informed the analysis of key
themes, which are presented in Section 4.

3.4 Limitations
While our study includes participants with a range of fuzzing expe-
rience, we focus on widely used tools such as AFL/AFL++, libFuzzer,
and their variants. These tools are the most common entry points
into fuzzing and come up frequently in both academic research and
practical security engineering. While we emphasize themes that
transcend specific tooling, we may capture usability patterns and
challenges most representative of common practice, at the potential
cost of underrepresenting experiences with niche fuzzers or highly
specialized domains.

Another potential limitation is self-selection bias. Participants
who responded to our outreach likely have stronger interest in
fuzzing and improving fuzzing workflows, and may thus have more

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

interest or experience in overcoming tooling challenges. We may
miss some challenges experienced, for example, by practitioners
who tried but abandoned fuzzing due to poor initial experiences.
To partially account for this, we included questions focused on
learning barriers, early-stage struggles, and moments of confusion.

Interview-based studies can introduce biases: participants may
misremember past experiences, and interviewer perspectives may
shape interpretations. To mitigate this, we asked for concrete exam-
ples, used a semi-structured protocol, and relied on collaborative
coding and iterative analysis [54].

Despite these limitations, our study offers practical insights into
the challenges and opportunities of using fuzzers, grounded in
diverse real-world experiences.

4 Results
In this section, we present our findings, organized into five cate-
gories.We beginwith a description of our participants to contextual-
ize their experiences. Next, we describe participants’ mental models
of fuzzers. We then present challenges, practices, and suggestions
for improvement across three stages of the fuzzing workflow: (1)
preparing targets and configuring fuzzers, (2) running and monitor-
ing fuzzing campaigns, and (3) integrating and extending fuzzing
within broader development and testing workflows. While we oc-
casionally report participant counts to provide context for specific
themes, these numbers are not intended to indicate prevalence in
the broader population.

4.1 Participants
Table 1 summarizes participants’ experience, organizational con-
text, and fuzzer usage. We categorize fuzzer use cases based on
participants’ roles and goals. Participants often have multiple use
cases, which we capture across the following major categories:
• Software development: Using fuzzers as part of regular develop-
ment workflows to catch bugs early.

• Cybersecurity: Applying fuzzing to discover vulnerabilities or
assess the security posture of software systems.

• DevOps: Using fuzzers as part of CI/CD pipelines to ensure
stability issues are caught continuously.

• QA/testing: Using fuzzers within broader software testing strate-
gies, focusing on software from third parties.

• Research: Employing fuzzing as part of academic or industry
research projects, such as tool evaluation, network protocol, or
auto harness generation.
Geographically, 12 of the 18 participants were based in the United

States, while the remaining six were located in other countries
across Europe and Asia.

4.2 Participants’ understanding of fuzzers
While all study participants are experienced users of fuzzers, and
many have deep technical knowledge, including research back-
grounds, their understanding of how fuzzers work varies widely.
Some participants indicated highly developed understandings of
fuzzing internals, while others expressed uncertainty about how
fuzzers work “under the hood.” This variation often reflects the
informal, self-directed nature of how they learned to use fuzzers.

Fuzzing is uniquely valuable. Participants consistently expressed
strong enthusiasm for fuzzing—not just as a practical testing tech-
nique, but also as a foundational concept in their approach to under-
standing software behavior. Even when fuzzers do not fully align
with their workflows or goals, participants see fuzzing as indis-
pensable for surfacing bugs other methods might miss. Rather than
viewing it as just another automation tool, many regard fuzzing as a
fundamentally different way of reasoning about software reliability
that emphasizes unpredictability, emergence, and exploration.

P3, for instance, described fuzzing as something developers “are
missing out on,” stressing that while unit tests cover expected cases,
“to find things that cannot be predicted, fuzzing is definitely the de
facto thing to do.” P18 echoed this perspective, saying, “I realized
[fuzzing] is a really good testing technique. . . . Why are developers
not utilizing that enough? It is really powerful, extremely powerful.”
Participants who had embraced fuzzing often reported a shift in
their testing mindset: “Once you get past the learning curve, you’re
entering a whole new realm of testing. You’d never fully trust test
cases anymore—you’d only trust whether something is bug-free
after running a fuzzer on it” (P3).

In addition to applying fuzzing for bug detection, participants
have adopted it as a core mental model for interrogating uncertainty
in complex software systems, cementing fuzzing as indispensable.

Fuzzers are worth adapting, even beyond their ideal scope.
While many consider fuzzing indispensable, participants recognize
fuzzing is not currently universally applicable, especially with lim-
ited tool sets. As P12 put it, “Currently, fuzzing is only a great fit for
a few problem domains . . . typically, file formats, network-based
formats, parsing, decoding, deserializing.” These input-driven, struc-
turally predictable systems are widely seen as well suited to fuzzing
compared to software with complex state or semantic logic.

Rather than abandoning the technique when not directly appli-
cable, participants frequently find ways to adapt fuzzing to new
contexts by applying it as a general-purpose probe for problems
such as understanding how a legacy system behaves, testing seman-
tic consistency between components, and monitoring coverage in
machine learning frameworks. More broadly, participants described
applying fuzzing to surface edge cases, reveal implicit assumptions,
or provide behavioral baselines that inform further manual testing.

Despite the fact that adapting fuzzing to these contexts often re-
quires additional effort (setup, scripting, or output reinterpretation),
participants characterized fuzzers as uniquely capable and worth
the effort, even when imperfectly aligned with their immediate
goals.

As black boxes, fuzzers create limited trust and interpretabil-
ity. While participants acknowledged the strong capabilities of
fuzzing, they also often described fuzzers’ internal behavior as
difficult to reason about. While all participants indicated an under-
standing of how fuzzers should work, they find that real-world use
often offers little feedback about what happens internally, resulting
in unpredictability and opacity. As P3 put it, “Even if you do a deep
dive into the fuzzer, it’s always going to feel like a black box.”

Participants often rely on surface-level metrics such as line or
path coverage, crash counts, or timeouts to gauge progress. While

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

ID Role Exp. Tools Org. type Fuzzer use cases
Software dev. Cybersecurity DevOps QA/testing Research

P1 Software engineer 1–2 yrs •, △, ★ Large ✓ ✓ ✓

P2 Research assistant 1–2 yrs •, △ Research ✓ ✓

P3 Research assistant 1–2 yrs • Research ✓

P4 Software engineer >5 yrs •, △, ★, ♦ Large ✓ ✓ ✓

P5 Research assistant 3–5 yrs •, △ Research ✓ ✓

P6 Research assistant 1–2 yrs •, △, ∇, ♦, ★ Research ✓ ✓ ✓ ✓

P7 Security engineer >5 yrs •, △, ★ Large ✓ ✓

P8 Security researcher <1 yr •, ∇ Research ✓ ✓ ✓

P9 Research assistant 1–2 yrs •, △, ∇ Research ✓ ✓ ✓

P10 Research assistant 3–5 yrs •, ★ Research ✓ ✓

P11 Software engineer >5 yrs •, △, ∇ Large ✓ ✓

P12 Security engineer 3–5 yrs •, △, ★ Small/Med ✓ ✓ ✓

P13 Research assistant 3–5 yrs •, ♦ Research ✓ ✓

P14 Security researcher >5 yrs •, △, ★ Large ✓ ✓

P15 Security engineer >5 yrs •, △ Small/Med ✓ ✓

P16 Security engineer 3–5 yrs △ Small/Med ✓

P17 Research assistant 3–5 yrs •, △, ★ Research ✓ ✓

P18 Security engineer 3–5 yrs •, △ Large ✓ ✓ ✓

Table 1: Demographic details of interview participants. Tools: • AFL, △ LibFuzzer, ∇ Honggfuzz, ♦ PeachFuzzer, ★OSSFuzz.
Org. type: Large = 500+ employees; Small/Med = <500; Research = university/industry research.

they recognized these metrics were imperfect, they are often the
only feedback available. As P4 explained, “We don’t really have
a clear way to determine, for example, what the absolute perfor-
mance of a fuzzer is or how to fully evaluate it. That lack of a ground
truth makes it challenging to assess fuzzers.” Others, like P12, de-
scribed relying on intuition or anecdotal experience rather than
measurable signals: “Just my own personal experience, AFL has
been better at finding bugs than LibFuzzer. . . . I don’t have data to
back that up . . . just my own personal experience.” This uncertainty
further contributes to the perception of fuzzers as black boxes, even
among users with deep technical experience. We discuss partici-
pants’ strategies for dealing with this challenge in Section 4.4.

4.3 Configuring fuzzers and preparing targets
Before fuzzing can begin, users must prepare both the fuzzing target
and the fuzzer. Here, we describe the challenges participants face
in doing so, and how these challenges impact their ability to use
fuzzers effectively. We then highlight participants’ current strate-
gies for choosing appropriate tools and iterating toward workable
setups. Finally, we present participants’ ideas for improving this
workflow stage, including more automation, modularity, and sup-
port for broader problem domains. We note that not all participant
suggestions (in this section and later) are necessarily realistic given
the fundamental nature of fuzzing, but they do highlight desired
user experiences. Going forward, we use the labels Challenge,
Practice, and Suggestion to signal the focus of each finding.

Challenge: Due in part to limited learning resources, partici-
pants feel they have inconsistent and narrow understanding.
A root cause of many challenges is participants’ strategy of learning
how to use fuzzers on the fly, which often limits the generalizability

of their knowledge across tools and contexts. Most participants de-
scribed learning fuzzing through hands-on practice (11/18) and/or
written resources such as blogs, academic papers, and documenta-
tion (13/18). While this approach often worked for quickly setting
up a specific fuzzer, it also led to perceived gaps or inconsistencies
in conceptual understanding, especially when reasoning about tool
behavior, effectiveness, or advanced feature configuration. As P5
put it, learning by “reading blog posts and experimenting [made it]
hard to tell if I’m doing it right.”

When documentation or tutorials fail to provide sufficient guid-
ance, some participants (6/18) reported turning to fuzzers’ source
code to understand how specific components work or how to extend
the tool. For example, P3 said, “If my initial searches aren’t helpful,
I would jump into the code of the fuzzer itself.” This can deepen
users’ knowledge about the fuzzer, but this knowledge is tied to a
specific tool’s implementation rather than general principles.

Participants noted that the absence of centralized, structured,
or pedagogically designed learning resources—on top of fuzzing’s
already steep learning curve—makes it difficult to build a coherent
understanding that transfers across tools and workflows. Even tech-
nically advanced participants reported relying on ad hoc sources
and personal heuristics. This complicates onboarding for new users
and introduces friction when sharing workflows, debugging issues
collaboratively, or evaluating fuzzing effectiveness in a reproducible
way.

Many participants commented on this limited generalizability
of knowledge when switching fuzzers. P14 noted that “if you’re
working on a new fuzzer and you want to reproduce the results of
another fuzzer, even a small change in configuration can lead to
completely different results.” Underscoring the cost, P6 said, “The
time wasted trying to make things work again in another new
fuzzer is huge,” noting that different fuzzer architectures require dif-
ferent libraries and knowledge. P18 further highlighted that fuzzing

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

techniques vary dramatically, contrasting web application direc-
tory fuzzing with coverage-guided fuzzing, where “you’re actually
instrumenting the code and trying to increase the code blocks cov-
erage.” P14 described how even experienced practitioners struggle
with tool-specific practices: “They [coworkers] often ask how to
instrument a program properly because a lot of techniques require
modifying the compiler. . . . Each fuzzer has its own instrumentation
approach.” Together, these accounts show that some knowledge
acquired in specific one fuzzer or context rarely transfers cleanly to
another, forcing practitioners to repeatedly reverse engineer best
practices rather than build on shared or standardized guidance.

Challenge: Setup is confusing and poorly aligned with users’
needs. To help with setup, most fuzzers come with documentation,
Docker containers, or tutorials. However, participants said these
are often not detailed enough, leading to struggles and a cycle of
trial and error with configuration flags, instrumentation steps, and
tool-specific adjustments. As P3 explained, “There’s a lot I wasn’t
familiar with . . . especially the flags. There are so many, and I
wasn’t always sure whether they were doing what I wanted them
to do.” Furthermore, as P17 reflected, “A lot of the documentation
. . . requires a ton of prior knowledge that a lot of people don’t have,”
creating a significant barrier to entry.

Participants also pointed out that fuzzers are often only available
or optimized for certain use cases (e.g., small C/C++ command-
line utilities) that do not reflect modern software’s structure and
interfaces. P18 explained, “Fuzzing needs to be applied to more
different platforms. We don’t deal with x86 only; we have different
platforms and IoT devices that you need to write software for.”

Participants noted that adjusting flags or compiler options to
improve fuzzer performance must be done carefully to avoid un-
intended consequences. As P4 warned, “Setting up the fuzzer and
configuring it appropriately is something we need to be very careful
with. . . . Certain [compiler] optimizers might reduce the sensitivity
of the fuzzer.” As a result, some participants deployed fuzzers using
default settings, even though this did not align with their needs.

Challenge: Complex fuzzing targets impact the ability to ap-
ply fuzzing effectively. Beyond setup, participants frequently
encounter challenges preparing real-world programs for fuzzing,
especially for large, layered, or legacy codebases. Many of these
systems are poorly documented, difficult to build, or rely on out-
dated dependencies. As P14 put it, “Some of these projects were
written 30 years ago—you never know what to expect.”

These problems were magnified by the technical requirements of
coverage-guided fuzzers. Many require recompiling the fuzzing tar-
get with custom instrumentation compilers (e.g., AFL++’s modified
Clang or LLVM pass) to provide metrics and guide input genera-
tion. But, as P14 noted, these extra steps “may fail if you enabled
certain optimization flags, or even fail by itself,” since “open-source
and legacy programs can be surprisingly fragile.” Further, as P9
mentioned, “Different programs are built differently,” and “under-
standing where to introduce the AFL++ compiler in that build
process is the tricky part.”

Challenge: Identifying targets in unfamiliar codebases. Even
after a successful build, participants reported lacking principled

strategies for selecting where to fuzz, especially when they were
fuzzing unfamiliar code. Instead, they rely on intuition, heuristics
like choosing functions that “looked interesting” (P16), or using
commercial tooling to surface likely targets but then applying per-
sonal judgment to finalize the decision. P15 said they “just identify
functions that look like they could be good targets.”

These uncertainties surrounding the program under test often
compound participants’ existing uncertainty about fuzzers. Partici-
pants reported being unsure how to apply their high-level fuzzing
knowledge to large, poorly understood, or legacy systems. This
mismatch between theoretical knowledge and practice introduced
hesitation and limited participants’ confidence in their strategies.

Practice: An iterative approach toward a working setup. To
cope with setup challenges, participants prioritize getting their
chosen fuzzer up and running with minimal friction. Rather than
aiming for a perfect setup from the start, they treat configuration
as an iterative, trial-and-error process: run the tool, observe what
breaks, adjust the harness or flags, and try again. During this pro-
cess, participants value speed and feedback over precision: even
though early runs are expected to be shallow or error-prone, par-
ticipants see value in getting something running quickly in order
to iterate and learn from results. As P16 explained, “For a first pass,
my priorities are to get something running as fast as possible.”

To reduce complexity and improve reliability during early stages
of fuzzing, participants often seek to simplify their environment.
Some participants (4/18) emphasized the value of isolating the fuzzer
to prevent interference from the host system or conflicting software.
As P10 explained, “I usually run fuzzing campaigns in a Docker
container . . . so it has its own space, its own memory, and so on.” In
this vein, participants may also start with minimal harnesses, often
“feed[ing] the fuzzer input to whatever function in the API looks
most top-level” (P16). These lightweight setups allow participants
to validate that the tool is functioning before adding complexity.

Practice: Selecting fuzzing targets based on experience, intu-
ition, and documentation. A critical part of setup is identifying
where to fuzz within a fuzzing target. As noted earlier, participants
often lack principled strategies for target selection and default to
intuition. Even when external tools are available to suggest candi-
date entry points, participants still shoulder much of the cognitive
load when determining which to fuzz, usually relying on their un-
derstanding and intuition. As P15 reflected, “Even with help. . . the
way we select functions is not scientific. It’s intuition-based.”

To gain a deeper understanding of an unfamiliar fuzzing target,
participants use documentation and example code to help identify
stable or representative entry points. As P17 expressed, “If I’m
trying to harness a function that’s in the example documentation, I
can look at that.”

When fuzzing workflows require or would benefit from initial
seeds, most participants reported extracting them directly from the
fuzzing target. A common strategy is to repurpose unit test inputs
or files from the project’s test suite. P18 considers this the “best
way” to obtain seeds, since developers “know their code the best."

Suggestion: Fuzzing setup should be automated and guided.
As a result of the setup challenges described above, participants

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

expressed a strong desire for tooling to guide or automate the setup
process, including help to identify viable targets, generate harness
scaffolds, and configure initial parameters efficiently.

The most frequently requested feature was automatic harness
generation. As described earlier, writing a harness requires un-
derstanding the fuzzing target—often involving time-consuming,
manual inspection of unfamiliar code. To reduce this burden, par-
ticipants want tools that could automatically generate runnable
harnesses based on program structure or existing usage patterns.
As P2 noted, automated harness generation would mean that “I
don’t need to write my own harness or specify the command line
manually. It could generate something the fuzzer can run.”

Others emphasized the potential of integrating fuzzing directly
into development environments. For example, both P12 and P15
envisioned a possible Visual Studio Code plugin that could automate
common setup steps: “A plugin that looks for targets, suggests a
harness with a large language model, writes a test file, and then
you just click go—you’re fuzzing.” For participants like P12 and P15,
seamless IDE integration could significantly reduce the barrier to
starting and iterating on fuzzing tasks.

To further streamline setup, participants want assistance identi-
fying good entry points and configuring fuzzer parameters. Cur-
rently, participants said they often rely on intuition or partial static
analysis, but they believe these tasks could—and should—be sup-
ported more directly by tooling. P9 described their ideal feature
set as “automatic harness generation, automatic instrumentation,
and automatically figuring out which configuration flags are best.”
Similarly, P15 suggested static analysis could be used to generate,
filter, and rank a list of fuzzable functions, reducing the need to
“manually go through every function.”

Even after setup, participants find it difficult to assess whether
their configuration choices, such as seed selection or entry point
targeting, are likely to yield useful results. Several expressed interest
in tools that could provide early indicators of setup quality before a
campaign begins. As P10 proposed, “Something like a metric from
previous fuzzing campaigns . . . that measures the quality of the
initial seed” would help users iterate more strategically.

Participants independently suggested AI as one possibility to
simplify or guide the setup process. While few had used large
languagemodels directly for fuzzer configuration, several suggested
it might be useful. P14 imagined a future where GPT-like tools could
“read the files, handle errors, fix the command iteratively. . . . That
would make life much easier.” This aligns with emerging research
exploring AI-assisted harness generation and automated fuzzing
workflows, which we briefly discussed in 2.2.

Together, these suggestions reflect a desire to move beyond low-
level configuration and towardmore intelligent, goal-driven fuzzing
setup, with tools that can reason about context and recommend
strategies, helping users get started with less trial and error.

4.4 Monitoring fuzzing campaigns
Once a fuzzer is running, users make ongoing decisions about how
to monitor progress, how to interpret output, and how long to
continue. In this section, we describe the challenges participants
encounter during active fuzzing, including difficulties interpreting
fuzzer output and uncertainty about when to stop. We highlight

the practical strategies participants use to improve efficiency and
gain insight, such as active observation and manual output triage.
Finally, we present their suggestions for improving this stage of the
workflow, including calls for more actionable output, clearer signals
about progress, and better support for analyzing and reproducing
crash results.

Challenge: Crash output is redundant and unhelpful.While
they do not expect crash reports to serve as a complete diagnosis,
participants emphasized that outputs often lack sufficient context to
understand the actual issue or severity. When asked whether AFL’s
output was helpful for pinpointing bugs, P9 described it as “more
of a starter. I take that input and use other tools to figure out where
the bug is. . . . I would re-execute it to see if that problem persists;
then I inspect it with memory analysis tools.” This response, echoed
by others, highlights that fuzzing results require considerable post-
processing and external analysis to become actionable.

Participants reported large volumes of redundant crashes that
require manual inspection. P3, who tests complex libraries, de-
scribed the scale of this problem: “Out of those thousand crashes,
900 of them can be redundant—it becomes really hard to manually
go through each and every one of them. That’s fundamentally a
challenge.”

While some tools offer deduplication or grouping to minimize
redundancy, participants often expressed distrust of these features,
fearing that unique bugs might be incorrectly grouped or silently
discarded. P7 said that AFL’s build-in deduplication sometimes
“clusters different crashes into the same group. And sometimes it
clusters one crash incorrectly into a different group. We have to
fine-tune it really carefully in terms of which heuristics we’re going
to apply.” P11 had experienced the opposite problem with AFL’s
deduplication: “We still found cases where different crashes actually
stemmed from the same bug but were recorded as distinct.”

In addition to crash reports, fuzzers produce timeout reports;
participants also find these difficult to interpret. While many con-
sider timeouts a potentially valuable signal—often indicating hangs
or performance bottlenecks—fuzzers rarely provide enough con-
text to evaluate their cause or severity. As P6 explained, “Does a
timeout mean there was a bug? Or could there be multiple bugs?
How do you interpret the timeout? It becomes very nuanced.” This
ambiguity leaves participants uncertain whether to treat timeouts
as bugs worth triaging or simply as noise.

False positives further compound uncertainties in output analy-
sis. Participants use the term differently, reflecting fuzzing’s varied
contexts and goals. For some, false positives referred to redundancy:
P1 equates them with duplicate crashes, emphasizing the burden
of triage and tooling efficiency, while P3 considers false positives
unique bugs that are mistakenly discarded. Others used the term
to describe inputs that do not correspond to real vulnerabilities,
as P13 explained: “We will have many false positives ... but it’s
actually not a vulnerability.” P17 highlighted another dimension,
emphasizing their focus on harness setup: “False positive crashes
could be occurring from my harness itself.” In contrast, when asked,
P7 downplayed the importance of false positives: “It is good enough
we have a bug to report. I don’t have time to worry about anything
else.” This diversity of considerations illustrates why fuzzer output

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

is particularly difficult to act on: practitioners must constantly eval-
uate results against their own definitions of correctness, severity,
and root cause.

Challenge: Runtime outputs lack key details and context.
Beyond crash output, participants also expressed frustration with
output produced while fuzzers are actively running. Many said it is
difficult to tell whether their campaign is making progress. While
some fuzzers expose performance metrics like coverage growth and
seed queue size, these metrics are often cryptic, under-documented,
or omitted entirely. As P12 said, “Runtime outputs are famously
inscrutable. . . . When you look at AFL’s output or libFuzzer, it’s all
just abbreviations of things. Nobody knows what the heck they are
until you read the source code.”

Participants who had attempted to inspect logs during fuzzing
found that crucial contextual information is often missing. For
example, P11 noted that “it doesn’t always log the parent seed,
which mutation operand was used to generate it, or even the exact
time of discovery.” Without this information, participants find it
difficult to trace how a particular input was derived, assess why
it triggered a bug, or reproduce conditions under which a crash
occurred.

This lack of transparency is exacerbated by the inherent random-
ness of fuzzing. As P14 explained, “Fuzzing results are inherently
random. A fuzzer might find a bug in one run but miss it in another.”
Without detailed metadata about input provenance and mutation
history, participants struggle with performance gap analysis and
root cause identification, making it harder to diagnose inconsistent
behavior or optimize future runs.

Taken together, these issues point to a core usability gap: fuzzers
can generate a lot of output, but it is often not readily informative.
Participants have to exert significant effort to make sense of crashes,
triage results, and assess campaign effectiveness.

Challenge: Stopping criteria are not well defined. Fuzzing is
inherently an open-ended process, and participants understand
that new bugs can always be found with more time or better muta-
tions. However, real-world constraints like compute budgets and
project deadlines mean they eventually have to decide when to stop.
Making that decision, however, is far from straightforward.

Some participants (5/18) explicitly mentioned that they rely
purely on intuition or informal heuristics. As P15 put it, “There’s
no rigorous ‘when fuzzing is done’ criteria. . . . I’ll typically set up a
fuzzing harness, run it overnight, and if in the morning there are
no finds, I’ll say, ‘Okay, there’s nothing here to be found.’”

Others have tried to use metrics like branch or path coverage to
guide the decision. But even this approach is fraught with doubt,
especially when participants are unsure whether stagnation reflects
a truly exhausted search space or a bug in their setup. As P18
described, “If the coverage is not increasing anymore . . . maybe
there’s a bug in our harness.”

Ultimately, many participants default to setting arbitrary time
windows—ranging from a few days to a few weeks—based on prac-
tical constraints (e.g., perceived progress or resources) rather than
technical indicators. P18 explained, “A couple of days at least. Maybe
like a couple of weeks even. We don’t have like a specific defined

time window, but we can decide to stop if this fuzzing process is con-
suming a lot of resources.” Some participants (10/18), particularly
those in research contexts, have adopted 24 hours as a standard
campaign length, not because it is ideal, but because it aligns with
common benchmarking practices.

While participants do not expect fuzzers to offer a definitive
“you’re done” signal, they consistently expressed a desire for more
meaningful feedback about progress. The broader challenge is not
necessarily about finding a stopping rule, but rather about dealing
with the fundamental uncertainties of fuzzing in more informed
ways.

Practice: Monitor early signals and prioritize efficiency. To
compensate for limited runtime feedback and unclear stopping
criteria, participants have adopted practical strategies to improve
the efficiency of their fuzzing campaigns. Rather than relying solely
on built-in metrics or default configurations, they emphasize active
monitoring and workflow-level optimizations to detect problems
early and maximize returns.

Several participants (5/18) highlighted the importance of directly
observing fuzzer behavior during the early stages of a campaign,
allowing them to catch setup problems early. As P1 put it, “It’s im-
portant to observe the process in real time rather than just starting
the fuzzer and walking away.” Similarly, P9 described using early
coverage metrics as a sanity check: “What I’m usually looking for
is if there’s absolutely no new branches found in the first couple of
minutes.” Participants emphasized that direct monitoring is espe-
cially important with limited tool support for runtime diagnostics
and termination guidance. In practice, participants rely on a small
set of interpretable signals, such as coverage and execution speed,
to assess fuzzing progress.

Others turn to parallelism to maximize fuzzer efficiency and
returns. Some run multiple fuzzers or instances of the same fuzzer
with synchronized corpora to increase path discovery. P14 combines
these approaches, explaining, “I would run three or four instances
of the same fuzzer that synchronize their corpora periodically. Ad-
ditionally, I would parallelize different fuzzers.”

Practice: Start with deduplication, then manual triage. Par-
ticipants follow a common pattern when analyzing fuzzer output:
first deduplicate crashes, then manually investigate those that re-
main. Many rely on custom scripts that go beyond the provided
fuzzer functionality in order to cluster or filter crashes based on
stack traces, memory addresses, or observed behavior. This initial
pruning step is seen as essential to reduce noise and focus attention
on distinct issues.

After deduplication, participants shift to more in-depth analysis,
such as rerunning crashing inputs, tracing execution using tools
like GDB or Valgrind, or inspecting code to identify root causes.
While time-consuming, this manual process is seen as necessary to
understand the significance of each crash and determine whether
it indicates a real vulnerability.

Participants also shared creative adaptations to streamline this
process. For example, P3 described an ad-hoc sampling strategy:
“Rerun [crash reports] . . . and randomly sample the outputs. Once I
see a pattern in the outputs, I create a script to prune out those spe-
cific patterns.” This approach deviates from tool-provided heuristics,

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

reflecting the extent to which participants have to rely on personal
judgment and scripting to make outputs manageable. While these
techniques are seen as making analysis more tractable, they are
also labor-intensive and require judgment and scripting skills. P17
employs a different strategy to streamline manual analysis: “In
some cases, you can look it up online and try to see if other people
experienced a similar crash.”

Suggestion: Provide detailed, actionable runtime output. As
noted above, participants consistently expressed frustration with
insufficiently detailed runtime output, which makes it difficult to
debug fuzzer setups and adjust strategies during long-running cam-
paigns.

Several participants (6/18) emphasized the need for richer, real-
time feedback during fuzzer execution. Rather than waiting until
the end of a run, they want visibility into the internal behavior of
the fuzzer while it is running—such as which paths are being hit,
how frequently, and where progress is stalling. As P8 expressed,
“Wewant to get more insights into why a fuzzer is having difficulties
finding a particular bug. . . . If we could know the frequency with
which the fuzzer hits each path, that would be helpful.”

Besides richer runtime feedback, some participants (6/18) envi-
sioned visual interfaces that could make fuzzing dynamics more
interpretable, especially for understanding execution paths and bot-
tlenecks. P10 imagined a web-based dashboard that would overlay
program structure with fuzzing behavior: “With the source code
on one side and a function-level view of how fuzzing is working
. . . you could see what inputs passed through which functions and
visualize the execution tree.”

A few participants (4/18) discussed possible human-in-the-loop
features as a promising direction. Rather than treating fuzzers as
black boxes, participants want a tool that could “recommend how I
can fuzz better, like offering tips or strategies to improve the fuzzing
process” (P3). This collaborative tool could “tell me when it’s no
longer being efficient” or ”maybe even recommend stopping or
fuzzing again later when the code has changed significantly” (P11).
These techniques would allow users to guide or interact with the
fuzzer mid-execution, by flagging bottlenecks or injecting hints,
instead of simply relying on automated exploration.

Suggestion: Make crash output easier to triage and repro-
duce. In addition to runtime feedback, participants agreed that
fuzzers need better support for crash triage and reproduction. As
described earlier, built-in dededuplication approaches leave room
for improvement, often requiring participants to develop custom
solutions.

Beyond deduplication, participants want crash output to be more
actionable. Some participants (4/18) suggested smoother reproduc-
tion mechanisms, such as the ability to “inject crashing inputs
directly into the target” (P1) or analysis hooks similar to those pro-
vided by tools like GDB, highlighting that this would help reduce
the overhead of re-executing crashes. Others (4/18) suggested that
fuzzers should provide flexible and informative categorization of
crash types. Specifically, they want tools to “automatically classify
the different results . . . based on the kind of bugs detected” (P2) to
help users prioritize and understand outcomes more effectively.

These suggestions reflect a broader desire for fuzzers that find
failures and support users in diagnosing and addressing them with
less manual effort.

4.5 Integration of fuzzing workflows
Beyond setup and runtime, participants often need to adapt fuzzers
to fit broader development workflows or support more advanced
testing goals. In this section, we describe the limitations participants
have encountered when applying advanced features, customizing
tool behavior, or scaling fuzzing across large systems. We outline
the workarounds participants have used to integrate fuzzers into
their pipelines—often writing scripts or wrappers to make tools fit
their specific context. Finally, we present suggestions for improving
this stage, including better user interfaces, more flexible architec-
tures, and features that help users coordinate fuzzing with other
development and testing activities.

Challenge: Fuzzers are overcomplicated and hard to adapt.
While modern fuzzers offer powerful capabilities, many participants
find them over-engineered, difficult to configure, and poorly aligned
with practical workflows. P4 noted that “the community has been
merging a lot of tools and mods into single platforms,” which adds
complexity and makes tools harder to work with. Several partici-
pants pointed out that setups intended to simplify fuzzing, such as
Docker-based workflows, sometimes introduce unnecessary com-
plexity. As P7 described, “They had one Docker image to build the
fuzzer, a second to compile the target, and a third to actually run it.”
What was meant to streamline experimentation instead created a
set of complicated pipelines that are difficult to modify.

Several participants noted that without usable, transparent in-
terfaces, new fuzzers that are theoretically better for a given task
may not get adopted. P3 mentioned attempting and failing to use a
specialized tool that was designed for their intended use case: “If
I had a better interface to understand what’s going on . . . I could
have leveraged (the tool) better. But it was so noisy. . . . I just fell
back to AFL.”

Recent innovations like hybrid fuzzing, which combines fuzzing
with static or symbolic analysis, aim to promote usability by increas-
ing code coverage and automating deeper bug discovery. Ironically,
participants (6/18) described them as especially difficult to config-
ure and fit into their workflow. As P8 explained, “They normally
have a symbolic executor running in parallel, and I need to figure
out the steps to set up both parts.” Some tools run multiple anal-
ysis modes simultaneously, which makes it difficult to manage or
control fuzzing sessions, in turn making it difficult to “figure out
how to stop them once they found the first crash” (P8).

Participants working in large-scale environments raised addi-
tional concerns about performance tuning. Despite having high
compute capacity, they had found that tools do not scale well and
require manual duplication of tasks to avoid performance degra-
dation. P11 explained, “On our system with 128 cores, running
64 threads often performs worse than 32. . . . We introduce dupli-
cate fuzzing tasks to prevent degradation.” These workarounds are
not just technical annoyances; they also introduce inefficiencies
that drain resources and limit the feasibility of deploying fuzzers
consistently at scale.

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

Together, these accounts reveal a growing disconnect between
the increasing complexity of modern fuzzers and the practical needs
of those who use them.

Challenge: Research prioritizes performance. Several partici-
pants (5/18), particularly from industry, expressed frustration with
the broader culture of fuzzing research, which they see as overly fo-
cused on achieving marginal gains in technical metrics rather than
improving usability or addressing practical barriers to adoption.
Specifically, participants contrasted research on advanced mutation
strategies, hybrid analysis, and deep state exploration with a lack
of attention to usability, such as clearer configuration interfaces,
modularizing components, and improved crash triage.

P12 observed, “I think fuzzer capability is good enough . . . but I
don’t see a lot of investigation into how to make these fuzzers easier
to use.” This view was echoed by P17, who considers many advance-
ments in fuzzer performance irrelevant to their work: “There can
always be changes made to the efficiency . . . but those are things
that I’m not particularly concerned [about].”

Participants across both academia and industry emphasized that
real-world adoption depends on usability. However, P14, whoworks
in industry, contrasted the two: “Industry cares more about usability
than academia does. . . . When we release a new fuzzer, we want
people to use it. In industry, if a tool isn’t easy to use, it won’t get
adopted.”

Challenge: Lack of standardization and reproducibility. Partic-
ipants also criticized a perceived lack of standardization and rigor in
fuzzer evaluation.2 P14 noted that despite efforts like FuzzBench [1],
“There’s no standardized way to evaluate. . . . In this environment, a
bad baseline is a good baseline. That’s a major problem in fuzzing
research.” Without agreed-upon benchmarks and consistent setups,
participants from both academia and industry expressed skepticism
about how well academic fuzzing results translate into practice.

Beyond research settings, lack of standardization also makes col-
laboration and reproducibility more difficult. Differences in archi-
tecture, environments, and dependency versions create headaches
when sharing setups or reproducing results. As P6 noted, “Certain
combinations just don’t work. . . .On a different architecture, you
might need a different version of a library that wasn’t necessarily
packaged with the program you’re trying to use. You can do all
your due diligence . . . but as soon as a couple of things change
. . . the next person who tries to reproduce your work often has to
invent a way to make it work.” They estimated that the cumulative
cost of this brittleness—especially in complex, low-level systems
code—likely amounts to “millions of dollars” in wasted developer
time.

These concerns are not limited to academia. Participants noted
that when state-of-the-art research lacks standardization and robust
evaluation practices, it becomes difficult for industry to benchmark
tools, assess tradeoffs, or justify adoption, limiting the deployment
of fuzzing at scale.

Practice: Selecting and adapting the right tool(s) for the task.
To better integrate fuzzing into their workflows, participants select

2Similar concerns are reported in [27].

and adapt tools based on the specific demands of their testing goals,
software constraints, and resource availability. While some fuzzers
attempt to offer general-purpose functionality across domains, par-
ticipants agreed that no single fuzzer is universally effective. In-
stead, they make pragmatic choices about which tools to use for
specific contexts, such as targeting compiled binaries, specific APIs,
or protocol-level behavior. These tool selection decisions are also
shaped by practical concerns such as deadlines, familiarity with
tooling, and the complexity of the fuzzing target.

Many participants (8/18) paired fuzzing with other analysis tech-
niques to improve effectiveness. P12 described their team’s typical
workflow as a combination of static analysis and fuzzing, stating,
“ Our bread and butter tends to be static analysis and fuzzing . . .
using public rules and also writing our own internal rules. Often
that informs the fuzzer.” Likewise, P13 explained that “only when
we combine [fuzzing and formal tools] do we find the bug,” illustrat-
ing the need to augment fuzzing with complementary strategies to
reach deeper system states.

As described above, newer hybrid fuzzing approaches attempt
to integrate fuzzing with static analysis, but participants who had
tried them found them difficult to use. In some cases, participants
modified the fuzzer itself to accommodate their needs. P3, working
with stateful protocols, recalled, “I had to make some modifications
to [the fuzzer] . . . We used another state machine alongside [the
fuzzer] to ensure certain states were being invoked or not,” showing
that integration sometimes required invasive changes to the tool.

For some participants (4/18), integrating fuzzing into their work-
flows required adaptations beyond configuration tweaks, including
building their own wrappers, scripts, or orchestration layers. For
example, P12 and P16 had used Cargo-Fuzz (a libFuzzer wrapper)
to fuzz Rust programs, while P15 mentioned using TestFuzz and
CargoAFL (an AFL wrapper) for Rust programs. P18 reported us-
ing GoFuzz for Go projects and noted limited success integrating
fuzzing into a GitLab continuous integration (CI) pipeline. Others,
like P6 and P7, wrote custom scripts to manage parallel runs or auto-
mate tasks like resetting parameters in order to scale fuzzing across
multiple targets or campaigns. While effective, these workarounds
highlight the absence of built-in support for usability and integra-
tion.

These adaptations highlight the diverse ways experienced users
shape fuzzing workflows to fit real-world testing challenges: of-
ten blending fuzzers with other tools, tuning their behavior, or
modifying them directly to meet their needs.

Suggestion: Fuzzers should be flexible and modular. In re-
sponse to the growing complexity of fuzzers, participants advo-
cated for flexibility in fuzzer structure and configuration. Some
(4/18) expressed a preference for modular architecture rather than
huge, monolithic tools; in a modular architecture, components (e.g.,
mutator, scheduler, and feedback mechanism) could be swapped or
extended independently As P7 explained: “The program being exe-
cuted, the mutation module, the scheduling module—they should all
be replaceable, like plug-and-play components. . . . In [one tool]. . .
if I want to change how feedback or scheduling works, I have to
go into the source code and make changes directly. And that’s not
pretty.”

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

Others (6/18) expressed a preference for standalone tools or
custom integrations over bundled toolchains. Rather than using
pre-integrated modules or instrumentation layers, they want to
combine tools manually to suit their specific goals. P4 said, “Some
people might disagree with me, but I prefer standalone tools with
their own setups.”

Beyond architectural modularity, participants also emphasized
the need for greater configuration flexibility. While many tools offer
various flags and options, some participants feel that important
parameters are too deeply embedded or hard-coded, limiting the
ability to adapt the tool to different use cases. P9, for example,
expressed frustration with one tool: “There are a lot of flags, but I
wish there were more options to turn different things on and off. . . .
A lot of things are baked in and hard-coded into the codebase, and
I wish I could modify them.” This lack of configurability makes it
harder for participants to tailor fuzzers to fit specific performance,
instrumentation, or deployment needs.

These suggestions show a broader desire for fuzzers that not
only work out of the box, but also allow power users to adapt and
reconfigure them for advanced use cases without digging deeply
into the source code.

Suggestion: Increase applicability across problem domains.
Many participants (11/18) further expressed a desire for fuzzers that
could work across a wider range of domains in general. They feel
that current tools are limited to traditional bug classes and struggle
to scale to more complex or abstract targets, such as business logic,
system integration, or semantic validation.

Some participants (3/18) suggested fuzzers should operate at a
higher level of abstraction to better support application logic, such
as authentication, authorization, or backend workflows. They envi-
sioned tools that could combine internal application data (e.g., web
server logs or state transitions) with fuzzer feedback to enable this
shift. As P12 explained, “If you can reconcile what the web server
sees with what the fuzzer sees, then I think there is opportunity.”

Others (5/18) emphasized that certain domains, such as kernel
fuzzing, emulator-based analysis, and distributed systems, remain
prohibitively slow or difficult to fuzz effectively. They called for
tools that could handle these environments more efficiently, es-
pecially when speed and depth must be balanced. As P14 noted,
“General-purpose fuzzing is already fast, but kernel fuzzing, network
fuzzing, and emulator-based fuzzing tend to be slow.”

Participants (10/18) also suggested combining fuzzing with for-
mal methods or symbolic techniques could improve its viability
in domains with large design spaces or complex constraints. P13
said, “Fuzzing is more efficient if I have to explore a large design
space, especially when combined with formal verifications.” Overall,
participants noted much potential value in hybrid approaches, de-
spite the usability burdens they currently impose (discussed above),
further reinforcing the need for more usable tooling in this space.

5 Discussion
Our findings demonstrate that limited fuzzer usability is not a mi-
nor inconvenience but a significant barrier with tangible security
consequences. The steep learning curve forces practitioners into

self-directed, trial-and-error learning, producing fragmented or un-
aligned mental models of how fuzzers operate. These misaligned
models, combined with the high manual effort required for triage,
prevent even enthusiastic and experienced users from realizing the
full potential of fuzzing. Many of these issues stem from a funda-
mental mismatch between users’ mental models and tools’ complex,
opaque reality. While prior work has emphasized setup hurdles for
novice users [49, 50], our interviews with experienced practition-
ers additionally reveal deeper, persistent usability gaps across the
fuzzing lifecycle, particularly the tension between novices’ need
for guidance and experts’ demand for flexibility.

Some modern fuzzing frameworks, such as LibAFL’s [15] mod-
ular architecture and OSS-Fuzz’s [55] CI integration, have begun
addressing aspects of these problems. However, these remain excep-
tions rather than the norm. Our recommendations therefore reflect
broader usability gaps across the fuzzing ecosystem, grounded in
the perspectives of users working across diverse environments and
domains.

From guided setup to expert customization. A recurring chal-
lenge is the “one-size-fits-all” design of many fuzzers. For novices,
prior studies highlight how steep setup curves deter adoption [49,
50]. Our findings reinforce this but extend it: even experienced
users revert to trial and error due to inadequate defaults and poor
documentation. This points to a clear need for fuzzers that function
as adaptive guides, lowering barriers to entry with automated har-
ness generation, smart defaults, and context-aware configuration
assistance. These features would shift onboarding from frustrating
trial and error to a more systematic process.

For some experts, however, the priorities differ. They stressed the
importance of modular, API-driven architectures that allow core
components like mutators, feedback mechanisms, and schedulers
to be swapped or extended without editing source code. While
recent frameworks like LibAFL move toward such modularity, this
adaptability remains rare across the ecosystem. Supporting both
guided setup and expert customization is crucial if fuzzers are to
scale beyond niche adoption.

Making fuzzer output actionable. Output triage emerged as
another significant bottleneck. Our study highlights practitioners’
lack of trust in existing deduplication and categorization features,
leading to heavy reliance on custom scripts. This makes raw output
labor-intensive to transform into actionable insights.

Our participants also reported difficulty reasoning about fuzzer
progress. Participants described fuzzers as “black boxes,” offering
opaque signals that make it difficult to judge coverage growth,
seed quality, or when to stop. Participants consistently highlighted
stopping criteria as a central pain point. Building richer runtime
transparency would empower users to make informed stopping
decisions and reduce wasted computation.

Workflow integration and interface improvements. Beyond
output transparency, participants emphasized fuzzers’ poor fit with
existing workflows. Participants called for native integration with
development ecosystems, including IDE plugins, dashboards, and
version control hooks, allowing fuzzers to be run incrementally and
monitored naturally.

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

These findings echo broader themes in security tool usability re-
search, where mismatches with developers’ workflows have driven
distrust and abandonment [46]. For fuzzing to succeed as a practical
testing strategy, outputs and operation must be tightly embedded
into the developer workflow rather than presented as a standalone
artifact.

Usability in emerging domains.While participants largely work
with traditional grey-box fuzzers, they highlighted that hybrid
fuzzing and other advanced approaches introduce even more us-
ability hurdles. Research has emphasized the technical performance
benefits of new approaches [26, 75], but their complexity has made
adoption difficult in practice. Understanding the usability chal-
lenges of hybrid tools is an underexplored but critical research
area.

Participants also imagined human-in-the-loop fuzzing systems
where users could guide exploration, prioritize paths, or modify
strategies mid-campaign, supported by intelligent recommenda-
tions and stopping criteria. These ideas resonate with trends toward
collaborative and interpretable security tooling.

As fuzzing expands into hybrid analysis, CI/CD pipelines, and
hardware or kernel testing, the principles highlighted here—guided
setup, expert modularity, actionable feedback, and collaborative
interaction—will become even more critical. Our work underscores
that usability gaps persist beyond setup challenges, including for
experienced practitioners, with systemic consequences for real-
world adoption. Addressing these challenges is essential if fuzzing
is to fulfill its promise not just as a technically powerful approach,
but as a practically usable one.

6 Conclusion
Fuzzing continues to evolve as a powerful testing techniques, but
its usability remains a critical barrier to broader adoption. Through
18 semi-strictured interviews with experienced users from both
academia and industry, we identify recurring challenges in the us-
age of fuzzers across setup, feedback interpretation, output triage,
and workflow integrations. Our findings highlight a disconnect
between the growing technical capabilities of fuzzers and the prac-
tical needs of fuzzers users. By centering usability in future tool
development through better automation, flexibility, actionable feed-
back, and integration, fuzzing as a testing technique can be more
accessible and effective across a wider range of domains.

Acknowledgment. We gratefully acknowledge support from a
UMIACS contract under the partnership between the University of
Maryland and the Department of Defense. This study is supported
in part by the National Science Foundation under grant number
2247954. We also thank all participants who generously took part
in our study.

References
[1] Google 2025. Google/Fuzzbench. Google. https://github.com/google/fuzzbench
[2] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus

Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. 2019. Fudge: Fuzz
Driver Generation at Scale. In ESEC/FSE 2019. 975–985. doi:10.1145/3338906.
3340456

[3] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges,
Dreams. In FOSE 2007. 85–103. doi:10.1109/FOSE.2007.25

[4] Paul E Black, Barbara Guttman, and Vadim Okun. 2021. Guidelines on Minimum
Standards for Developer Verification of Software. arXiv:2107.12850

[5] Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. 2021. Fuzzing:
Challenges and Reflections. 38, 3 (2021), 79–86. doi:10.1109/MS.2020.3016773

[6] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-
lenges and Reflections. IEEE Software 38, 3 (2020), 79–86.

[7] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In S&P 2015. IEEE, 725–741. doi:10.1109/SP.2015.50

[8] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
From Program Analysis: An Empirical Study. In ASE 2016. 332–343. doi:10.1145/
2970276.2970347

[9] Victoria Clarke and Virginia Braun. 2017. Thematic Analysis. The Journal of
Positive Psychology 12, 3 (2017), 297–298.

[10] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. 2023. Large language Models are Edge-Case Fuzzers:
Testing Deep Learning Libraries via Fuzzgpt. arXiv:2304.02014

[11] Lisa Nguyen Quang Do, James R Wright, and Karim Ali. 2020. Why Do Software
Developers Use Static Analysis Tools? A User-Centered Study of Developer Needs
and Motivations. IEEE Transactions on Software Engineering 48, 3 (2020), 835–847.
doi:10.1109/TSE.2020.3004525

[12] Max Eisele, MarcelloMaugeri, Rachna Shriwas, Christopher Huth, and Giampaolo
Bella. 2022. Embedded Fuzzing: A Review of Challenges, Tools, and Solutions. 5,
1 (2022), 18. doi:10.1186/s42400-022-00123-y

[13] Michael Felderer, Matthias Büchler, Martin Johns, Achim D Brucker, Ruth Breu,
and Alexander Pretschner. 2016. Security Testing: A Survey. In Advances in
Computers. Vol. 101. Elsevier, 1–51.

[14] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++
: Combining Incremental Steps of Fuzzing Research. In WOOT 2020. https:
//www.usenix.org/conference/woot20/presentation/fioraldi

[15] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti. 2022.
LibAFL: A Framework to Build Modular and Reusable Fuzzers. In CCS 2022 (Los
Angeles, U.S.A.). doi:10.1145/3548606.3560602

[16] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-Based
Whitebox Fuzzing. In PLDI 2008. 206–215. doi:10.1145/1375581.1375607

[17] Google. [n. d.]. Google FuzzTest. https://github.com/google/fuzztest
[18] Zhaoqiang Guo, Tingting Tan, Shiran Liu, Xutong Liu, Wei Lai, Yibiao Yang,

Yanhui Li, Lin Chen, Wei Dong, and Yuming Zhou. 2023. Mitigating False Pos-
itive Static Analysis Warnings: Progress, Challenges, and Opportunities. IEEE
Transactions on Software Engineering 49, 12 (2023), 5154–5188.

[19] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. In POMACS 2020, Vol. 4. 1–29. doi:10.48550/arXiv.
2009.01120

[20] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L Hosking. 2021. Seed Selection for Successful Fuzzing. In ISSTA
2021. 230–243. https://hexhive.epfl.ch/publications/files/21ISSTA2.pdf

[21] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
FuzzGen: Automatic Fuzzer Generation. In USENIX Security 2020. 2271–2287.

[22] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. Utopia: Automatic
Generation of Fuzz Driver Using Unit Tests. In S&P 2023. IEEE, 2676–2692. doi:10.
1109/SP46215.2023.10179394

[23] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In ICSE 2013. IEEE, 672–681. doi:10.1109/ICSE.2013.6606613

[24] Samantha Katcher, James Mattei, Jared Chandler, and Daniel Votipka. 2025. An
Investigation of Interaction and Information Needs for Protocol Reverse Engi-
neering Automation. In CHI 2025. doi:10.1145/3706598.3713630

[25] Natalia Kazankova. 2024. From DAST to Dawn: Why Fuzzing is the Better Solu-
tion. https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-
is-the-better-solution

[26] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and By-
oungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel.. In NDSS. https:
//www.ndss-symposium.org/wp-content/uploads/2020/02/24018-paper.pdf

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In CCS 2018 (Toronto, Canada). NY, USA, 2123–2138.
doi:10.1145/3243734.3243804

[28] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE Int’l Conf. on automated software engineering. 475–485. doi:10.1145/
3238147.3238176

[29] Jinfeng Li. 2020. Vulnerabilities Mapping Based on OWASP-SANS: A Survey for
Static Application Security Testing (SAST). arXiv:2004.03216

[30] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[31] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. 2012. Software Vulnerability
Discovery Techniques: A Survey. In 2012 Fourth Int’l Conf. on Multimedia Infor-
mation Networking and Security (2012-11). 152–156. doi:10.1109/MINES.2012.202

https://github.com/google/fuzzbench
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1109/FOSE.2007.25
https://arxiv.org/abs/2107.12850
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://arxiv.org/abs/2304.02014
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1186/s42400-022-00123-y
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1145/1375581.1375607
https://github.com/google/fuzztest
https://doi.org/10.48550/arXiv.2009.01120
https://doi.org/10.48550/arXiv.2009.01120
https://hexhive.epfl.ch/publications/files/21ISSTA2.pdf
https://doi.org/10.1109/SP46215.2023.10179394
https://doi.org/10.1109/SP46215.2023.10179394
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3706598.3713630
https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-is-the-better-solution
https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-is-the-better-solution
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24018-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24018-paper.pdf
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://arxiv.org/abs/2004.03216
https://doi.org/10.1109/MINES.2012.202

CCS ’25, October 13–17, 2025, Taipei, Taiwan Yunze Zhao et al.

[32] Yuwei Liu, Yanhao Wang, Purui Su, Yuanping Yu, and Xiangkun Jia. 2021. Instru-
guard: Find and Fix Instrumentation Errors for Coverage-Based Greybox Fuzzing.
In ASE 2021. 568–580. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
9678671

[33] LLVM Project. [n. d.]. LibFuzzer – A Library for Coverage-Guided Fuzz Testing. —
LLVM 21.0.0git Documentation. https://llvm.org/docs/LibFuzzer.html

[34] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou, Jianhai Chen, and Jing Chen.
2018. Smartseed: Smart Seed Generation for Efficient Fuzzing. arXiv:1807.02606

[35] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In
USENIX Security 2019. 1949–1966. doi:10.5555/3361338.3361473

[36] Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang, Binbin Zhao, Kangjie
Lu, and Raheem Beyah. 2022. EMS: History-Driven Mutation for Coverage-Based
Fuzzing. In NDSS. https://www.ndss-symposium.org/wp-content/uploads/2022-
162-paper.pdf

[37] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. 2024. Prompt Fuzzing for
Fuzz Driver Generation. In CCS 2024. 3793–3807. doi:10.48550/arXiv.2312.17677

[38] Reza M. Parizi, Kai Qian, Hossain Shahriar, Fan Wu, and Lixin Tao. 2018. Bench-
mark Requirements for Assessing Software Security Vulnerability Testing Tools.
In COMPSAC 2018, Vol. 01. 825–826. doi:10.1109/COMPSAC.2018.00139

[39] Sanoop Mallissery and Yu-Sung Wu. 2023. Demystify the Fuzzing Methods: A
Comprehensive Survey. Comput. Surveys 56, 3 (2023), 1–38.

[40] James Mattei, Madeline McLaughlin, Samantha Katcher, and Daniel Votipka. 2022.
A Qualitative Evaluation of Reverse Engineering Tool Usability. In ACSAC 2022
(Austin, TX, USA). NY, USA, 619–631. doi:10.1145/3564625.3567993

[41] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. In CSCW, Vol. 3. 1–23. doi:10.1145/3359174

[42] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy. 2012. Fuzzing:
The State of the Art. Technical Report DSTO–TN–1043. Australian Government,
Department of Defence, Defence Science and Technology Organisation.

[43] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A Large-Scale
Study of Usability Criteria Addressed by Static Analysis Tools. In ISSTA 2022.
532–543. doi:10.1145/3533767.3534374

[44] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler,
Andrew Barbarello, and W. Michael Petullo. 2020. The Industrial Age of Hack-
ing. In USENIX Security 2020. 1129–1146. https://www.usenix.org/conference/
usenixsecurity20/presentation/nosco

[45] Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. 2023. The Human Side of Fuzzing: Challenges Faced by Devel-
opers During Fuzzing Activities. ACM Trans. Softw. Eng. Methodol. 33, 1, Article
14 (Nov. 2023), 26 pages. doi:10.1145/3611668

[46] Leysan Nurgalieva, Alisa Frik, and Gavin Doherty. 2023. A Narrative Review
of Factors Affecting the Implementation of Privacy and Security Practices in
Software Development. Comput. Surveys 55, 14s (2023), 1–27.

[47] OpenAI. 2025. OpenAI/Whisper. https://github.com/openai/whisper. https:
//github.com/openai/whisper

[48] OSS-Fuzz. [n. d.]. Fuzzing Introspection of OSS-Fuzz Projects. https://introspector.
oss-fuzz.com/

[49] Stephan Plöger, Mischa Meier, and Matthew Smith. 2021. A Qualitative Usability
Evaluation of the Clang Static Analyzer and libFuzzer with CS Students and CTF
Players. In SOUPS 2021. 553–572. https://www.usenix.org/conference/soups2021/
presentation/ploger

[50] Stephan Plöger, Mischa Meier, and Matthew Smith. 2023. A Usability Evaluation
of AFL and libFuzzer with CS Students. In CHI 2023 (Hamburg, Germany). NY,
USA, Article 186, 18 pages. doi:10.1145/3544548.3581178

[51] Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. 2021.
An Empirical Analysis of Practitioners’ Perspectives on Security Tool Integration
Into DevOps. In ESEM 2021. 1–12.

[52] Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen, and Fatih Turkmen. 2020.
Continuous Security Testing: A Case Study on Integrating Dynamic Security
Testing Tools in CI/CD Pipelines. In EDOC 2020. IEEE, 145–154. doi:10.1109/
EDOC49727.2020.00026

[53] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security 2014. 861–875.

[54] Irving Seidman. 2006. Interviewing as Qualitative Research: A Guide for Researchers
in Education and the Social Sciences. Teachers college press.

[55] Kostya Serebryany. 2017. OSS-Fuzz - Google’s Continuous Fuzzing Service for
Open Source Software. In USENIX security 2017. USENIX Association, Vancouver,
BC.

[56] Dongdong She, Abhishek Shah, and Suman Jana. 2022. Effective Seed Scheduling
for Fuzzing with Graph Centrality Analysis. In S&P 2022. IEEE, 2194–2211. doi:10.
48550/arXiv.2203.12064

[57] Gabriel Sherman and Stefan Nagy. 2025. No Harness, No Problem: Oracle-
Guided Harnessing for Auto-generating C API Fuzzing Harnesses. In ICSE 2025.
IEEE Computer Society, 775–775. https://www-old.cs.utah.edu/~snagy/papers/
25ICSE-b.pdf

[58] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools
for Security. In SOUPS 2020. 221–238. doi:10.5555/3488905.3488918

[59] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions Developers Ask While Diagnosing
Potential Security Vulnerabilities with Static Analysis. In ESEC/FSE 2015. 248–259.
doi:10.1145/2786805.2786812

[60] Murugiah Souppaya, Karen Scarfone, and Donna Dodson. 2022. Secure Software
Development Framework. NIST Special Publication 800, 218 (2022), 800–218.

[61] Mohammad Tahaei, Ruba Abu-Salma, and Awais Rashid. 2023. Stuck in the
Permissions With You: Developer & End-User Perspectives on App Permissions
& Their Privacy Ramifications. In CHI 2023. 1–24. doi:10.48550/arXiv.2301.06534

[62] Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K Wolters.
2021. Security Notifications in Static Analysis Tools: Developers’ Attitudes,
Comprehension, and Ability to Act on Them. In CHI 2021. 1–17. doi:10.1145/
3411764.3445616

[63] Tyler W Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. 2016. What Questions Remain? An Examination of How Developers Under-
stand an Interactive Static Analysis Tool. In SOUPS 2016. https://www.usenix.
org/system/files/conference/soups2015/wsiw16_paper_thomas.pdf

[64] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
Aletheia: Improving the Usability of Static Security Analysis. In CCS 2014. 762–
774. doi:10.1145/2660267.2660339

[65] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald CGall, and Andy Zaidman. 2020. HowDevelopers Engagewith Static Analysis
Tools in Different Contexts. Empirical Software Engineering 25 (2020), 1419–1457.

[66] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context Is King: The Developer Perspective
on the Usage of Static Analysis Tools. In SANER 2018. 38–49. doi:10.1109/SANER.
2018.8330195

[67] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
2018. Hackers vs. Testers: A Comparison of Software Vulnerability Discovery
Processes. In 2018 IEEE Symp. on Security and Privacy (SP). 374–391. doi:10.1109/
SP.2018.00003

[68] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 S&P. IEEE, 579–594. doi:10.1109/SP.2017.23

[69] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware greybox fuzzing. In ICSE 2019. IEEE, 724–735. doi:10.1109/ICSE.2019.00081

[70] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization.. In NDSS 2020. https://www.ndss-
symposium.org/wp-content/uploads/2020/02/24422-paper.pdf

[71] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4all: Universal Fuzzing with Large Language Models. In ICSE
2024. 1–13. doi:10.48550/arXiv.2308.04748

[72] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. In S&P 2016. 158–177. doi:10.1109/SP.2016.18

[73] Qian Yan, MinhuanHuang, and Huayang Cao. 2022. A Survey of Human-Machine
Collaboration in Fuzzing. In DSC 2022. IEEE, 375–382. doi:10.1109/DSC55868.
2022.00058

[74] Zhenhua Yu, Zhengqi Liu, Xuya Cong, Xiaobo Li, and Li Yin. 2024. Fuzzing:
Progress, Challenges, and Perspectives. 78, 1 (2024), 1–29. doi:10.32604/cmc.2023.
042361

[75] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX
Security 2018. 745–761. doi:10.5555/3277203.3277260

[76] Cen Zhang, Mingqiang Bai, Yaowen Zheng, Yeting Li, Wei Ma, Xiaofei Xie,
Yuekang Li, Limin Sun, and Yang Liu. 2023. Understanding Large Language
Model Based Fuzz Driver Generation. arXiv:2307.12469

[77] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue, Jundong Xie, Hongxu Chen,
Xinlei Ying, Jiashui Wang, and Yang Liu. 2021. APICraft: Fuzz Driver Generation
for Closed-Source SDK Libraries. In USENIX Security 2021. 2811–2828. https:
//www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen

[78] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting Li, Wei Ma, Xiaofei Xie,
Yuekang Li, Limin Sun, and Yang Liu. 2024. How Effective are They? Exploring
Large Language Model Based Fuzz Driver Generation. In ISSTA 2024. 1223–1235.
doi:10.48550/arXiv.2312.17677

[79] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng Zhang, and Yu Jiang. 2021.
Intelligen: Automatic Driver Synthesis for Fuzz Testing. In ICSE 2021. IEEE, 318–
327. doi:10.1109/ICSE-SEIP52600.2021.00041

[80] Xiaoqi Zhao, Haipeng Qu, Wenjie Lv, Shuo Li, and Jianliang Xu. 2021. Moofuzz:
Many-Objective Optimization Seed Schedule for Fuzzer. Mathematics 9, 3 (2021),
205.

[81] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. Comput. Surveys 54, 11s (2022), 1–36.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678671
https://llvm.org/docs/LibFuzzer.html
https://arxiv.org/abs/1807.02606
https://doi.org/10.5555/3361338.3361473
https://www.ndss-symposium.org/wp-content/uploads/2022-162-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-162-paper.pdf
https://doi.org/10.48550/arXiv.2312.17677
https://doi.org/10.1109/COMPSAC.2018.00139
https://doi.org/10.1145/3564625.3567993
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3533767.3534374
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://doi.org/10.1145/3611668
https://github.com/openai/whisper
https://github.com/openai/whisper
https://github.com/openai/whisper
https://introspector.oss-fuzz.com/
https://introspector.oss-fuzz.com/
https://www.usenix.org/conference/soups2021/presentation/ploger
https://www.usenix.org/conference/soups2021/presentation/ploger
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.48550/arXiv.2203.12064
https://doi.org/10.48550/arXiv.2203.12064
https://www-old.cs.utah.edu/~snagy/papers/25ICSE-b.pdf
https://www-old.cs.utah.edu/~snagy/papers/25ICSE-b.pdf
https://doi.org/10.5555/3488905.3488918
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.48550/arXiv.2301.06534
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3411764.3445616
https://www.usenix.org/system/files/conference/soups2015/wsiw16_paper_thomas.pdf
https://www.usenix.org/system/files/conference/soups2015/wsiw16_paper_thomas.pdf
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24422-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24422-paper.pdf
https://doi.org/10.48550/arXiv.2308.04748
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1109/DSC55868.2022.00058
https://doi.org/10.1109/DSC55868.2022.00058
https://doi.org/10.32604/cmc.2023.042361
https://doi.org/10.32604/cmc.2023.042361
https://doi.org/10.5555/3277203.3277260
https://arxiv.org/abs/2307.12469
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://doi.org/10.48550/arXiv.2312.17677
https://doi.org/10.1109/ICSE-SEIP52600.2021.00041

AQualitative Analysis of Fuzzer Usability and Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

A Appendix: Interview Protocol
Our codebook, pre-interview survey, and interview protocol are
publicly available at our OSF repository: https://osf.io/bshup/?view_
only=078ea6a674cb4044b23334554654880a.

https://osf.io/bshup/?view_only=078ea6a674cb4044b23334554654880a
https://osf.io/bshup/?view_only=078ea6a674cb4044b23334554654880a

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Fundamental concepts of fuzzing
	2.2 Workflow of coverage-guided fuzzing
	2.3 Fuzzer usability
	2.4 Usability beyond fuzzing

	3 Method
	3.1 Recruitment
	3.2 Interview protocol
	3.3 Data analysis
	3.4 Limitations

	4 Results
	4.1 Participants
	4.2 Participants' understanding of fuzzers
	4.3 Configuring fuzzers and preparing targets
	4.4 Monitoring fuzzing campaigns
	4.5 Integration of fuzzing workflows

	5 Discussion
	6 Conclusion
	References
	A Appendix: Interview Protocol

